the spatial distribution patterns of temperature, precipitation, and humidity using geostatistical exploratory analysis (case study: central area of iran)

نویسندگان

حمید نظری پور

استادیار آب و هواشناسی، گروه محیط زیست، پژوهشکده علوم محیطی، پژوهشگاه علوم و تکنولوژی پیشرفته و علوم محیطی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته کرمان، ایران مهدی دوستکامیان

دانشجوی دکتری آب و هواشناسی، گروه جغرافیا، دانشکده علوم انسانی، دانشگاه زنجان، ایران سارا علیزاده

دانشجوی کارشناسی ارشد آب و هواشناسی، دانشکده علوم جغرافیایی، دانشگاه خوارزمی، تهران، ایران

چکیده

spatial autocorrelation (sa) is the correlations of the observed data of an area in the form of spatial pattern. the criterion of sa phenomenon occurrence is when the distribution of one observed variable value follows a particular pattern systematically. the sa analysis is most useful and an important tool for investigating the spatial database, this analysis not only itself gives useful information about the relationship between the inner side, but the results for the most complex statistical analysis are given. the aim of this study is to investigate the pattern of the spatial distribution of temperature, rainfall and humidity model of spatial autocorrelation using moran's central local and global statistics. the main aim of this study is to investigate the spatial distribution patterns of temperature, precipitation, and humidity using geostatistical exploratory analysis in the central area of iran. for this purpose, data from 72 synoptic stations of iranian meteorological organization for the period from 1972 to 2012 were collected, reviewed, and analyzed. methods used include ordinary, sample and general kriging with circular, gaussian, spherical, and exponential variograms, which is done in arc gis 10.2. then, the errors criteria measures to assess their accuracy and precision have been used. kriging is a moderately quick interpolator that can be exact or smoothed depending on the measurement error model. kriging uses statistical models that allow a variety of map outputs including predictions, standard errors, and probabilities. kriging assigns weights according to a (moderately) data-driven weighting function, rather than an arbitrary function, but it is still an interpolation algorithm and will give very similar results to those of others methods in many cases. all kriging techniques are based on the simple linear models as:                                                                                                                      (1) whereis the estimator of the true value at any location, andare the weights allocated to each observation such that                                                                                                                               (2) the technique minimizes estimation variables by solving a set of kriging equations, which include covariance between the point or volume to be estimated and the sample points and covariance between each pair of sample points .in this investigation, we have used the simple, ordinary, and universal kriging for interpolation of temperature, precipitation, and humidity. various results are obtained with the use of different interpolation methods on similar data. with the wide and increasing applications of the spatial interpolation methods, there is also a growing concern about their accuracy and precision. several error measurements have been proposed. commonly used error measurements include: mean error (me) or mean bias error (mbe), mean absolute error (mae), mean squared error (mse) and root mean squared error (rmse). if me and mse are closer to zero, and rmse is smaller, the better is the model. ase and rsme should be the same or close. if ase>rsme, then the method overestimates the primary variable. if ase1, the method underestimates the primary variable, and if rmsse

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

an investigation about the relationship between insurance lines and economic growth; the case study of iran

مطالعات قبلی بازار بیمه را به صورت کلی در نظر می گرفتند اما در این مطالعه صنعت بیمه به عنوان متغیر مستفل به بیمه های زندگی و غیر زندگی شکسته شده و هم چنین بیمه های زندگی به رشته های مختلف بیمه ای که در بازار بیمه ایران سهم قابل توجهی دارند تقسیم میشود. با استفاده از روشهای اقتصاد سنجی داده های برای دوره های 48-89 از مراکز ملی داده جمع آوری شد سپس با تخمین مدل خود بازگشتی برداری همراه با تعدادی ...

15 صفحه اول

a case study of the two translators of the holy quran: tahereh saffarzadeh and laleh bakhtiar

بطورکلی، کتاب های مقدسی همچون قران کریم را خوانندگان میتوان مطابق با پیش زمینه های مختلفی که درند درک کنند. محقق تلاش کرده نقش پیش زمینه اجتماعی-فرهنگی را روی ایدئولوژی های مترجمین زن و در نتیجه تاثیراتش را روی خواندن و ترجمه آیات قرآن کریم بررسی کند و ببیند که آیا تفاوت های واژگانی عمده ای میان این مترجمین وجود دارد یا نه. به این منظور، ترجمه 24 آیه از آیات قرآن کریم مورد بررسی مقایسه ای قرار ...

15 صفحه اول

formation and evolution of regional organizations: the case study of the economic cooperation organization (eco)

abstract because of the many geopolitical, geo economical and geo strategically potentials and communicational capabilities of eco region, members can expand the convergence and the integration in base of this organization that have important impact on members development and expanding peace in international and regional level. based on quality analyzing of library findings and experts interv...

15 صفحه اول

pricing unemployment insurance : the case of iran

employees always concern about losing their job , or in other word , losing their income resources. for this purpose, every government requires strong system for covering these concerns. the unemployment insurance (ui) program’s can be used for achieving this goal. in this thesis, we price ui based on the insurance history of employee and the duration of being unemployed. we use the weibull dis...

Analysis of inter-decade changes in trends and spatial patterns of annual and seasonal precipitation, case study: West of Iran

The present research about the spatial changes of precipitation is mainly focused on western areas of Iran. Precipitation data for three seasons of fall, winter, and spring have been obtained from Esafzari Database, with 15*15 km spatial resolution in the form of a Lambert Cone Image System for the period from 1986 to 2015. To examine the prevailing pattern of precipitation in west of Iran, we ...

متن کامل

esp needs analysis of iranian ma students: a case study of university of isfahan

نیاز سنجی دانشجویان کارشناسی ارشد ایرانی در رابطه با زبان تخصصی: مطالعه ای در دانشگاه اصفهان هدف از این مطالعه بررسی نیازهای یادگیری زبان خارجی دانشجویان کارشناسی ارشد دانشجویان دانشگاه اصفهان در رشته های زیست شناسی، روانشناسی، تربیت بدنی، حسابداری و فلسفه ی غرب میباشد. در مجموع 80 دانشجودر پنج رشته ی متفاوت از دانشگاه اصفهان در این پژوهش شرکت داشتند.علاوه بر این هشتاد دانشجو،25 استاد دروس ت...

15 صفحه اول

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
فیزیک زمین و فضا

جلد ۴۱، شماره ۱، صفحات ۹۹-۱۱۷

کلمات کلیدی
spatial autocorrelation (sa) is the correlations of the observed data of an area in the form of spatial pattern. the criterion of sa phenomenon occurrence is when the distribution of one observed variable value follows a particular pattern systematically. the sa analysis is most useful and an important tool for investigating the spatial database this analysis not only itself gives useful information about the relationship between the inner side but the results for the most complex statistical analysis are given. the aim of this study is to investigate the pattern of the spatial distribution of temperature rainfall and humidity model of spatial autocorrelation using moran's central local and global statistics. the main aim of this study is to investigate the spatial distribution patterns of temperature precipitation and humidity using geostatistical exploratory analysis in the central area of iran. for this purpose data from 72 synoptic stations of iranian meteorological organization for the period from 1972 to 2012 were collected reviewed and analyzed. methods used include ordinary sample and general kriging with circular gaussian spherical and exponential variograms which is done in arc gis 10.2. then the errors criteria measures to assess their accuracy and precision have been used. kriging is a moderately quick interpolator that can be exact or smoothed depending on the measurement error model. kriging uses statistical models that allow a variety of map outputs including predictions standard errors and probabilities. kriging assigns weights according to a (moderately) data driven weighting function rather than an arbitrary function but it is still an interpolation algorithm and will give very similar results to those of others methods in many cases. all kriging techniques are based on the simple linear models as:                                                                                                                      (1) whereis the estimator of the true value at any location andare the weights allocated to each observation such that                                                                                                                               (2) the technique minimizes estimation variables by solving a set of kriging equations which include covariance between the point or volume to be estimated and the sample points and covariance between each pair of sample points .in this investigation we have used the simple ordinary and universal kriging for interpolation of temperature precipitation and humidity. various results are obtained with the use of different interpolation methods on similar data. with the wide and increasing applications of the spatial interpolation methods there is also a growing concern about their accuracy and precision. several error measurements have been proposed. commonly used error measurements include: mean error (me) or mean bias error (mbe) mean absolute error (mae) mean squared error (mse) and root mean squared error (rmse). if me and mse are closer to zero and rmse is smaller the better is the model. ase and rsme should be the same or close. if ase>rsme then the method overestimates the primary variable. if ase1 the method underestimates the primary variable and if rmsse

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023